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Introduction

● MPSAFE network stack in FreeBSD 5.3

– November 2004

● Network stack safe to execute concurrently

– Parallelism – many processors at a time

– Preemption – low latency context switching

– Direct dispatch – from interrupt thread context

● Opportunities are limited due to work model

– Threads represent potential parallelism

– So work must occur in multiple threads
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Socket to Interface Code Flow
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Transmit
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Input Path Parallelism

● Does have native concurrency

– Work processed in ithread, optionally netisr, and 
user thread

● Cost of context switching measurable

– Default in 7.x is direct dispatch as frequently faster

● Ordered with respect to source

– Lack of parallelism for high bandwidth sources 



17 May 2007 6

Deferred netisr
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Direct netisr
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netisr2

● Function of netisr after direct dispatch

– Encapsulation/decapsulation, loopback traffic

● Netisr2 re-implement netisr infrastructure

– Per-cpu kernel worker threads

– Maintain dispatch/queue distinction

● How to balance ordering and parallelism?

– For direct dispatch, source ordering

– For remote source input, per-protocol affinity lookup

– For locally source, affinity passed down stack
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TCP Input Parallelism

● Serious bottleneck for TCP input processing
● Two IP-layer locks per protocol

– Global pcbinfo lock protecting inpcb lists
● Insert, lookup, removal

– Per-inpcb lock protects per-connection state
● Global list manipulations involving connection
● Per-connection state

● Input path acquires and holds tcbinfo lock

– inpcb state may change requiring list changes
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Addressing Locking Granularity

● Big issue is tcbinfo lock

– Held over input paths that may reset connection

– In 7.x, no longer over common case output paths

● Option 1: True reference counting on inpcbs

– tcbinfo can be dropped and then safely re-acquired 
without race when inpcb lock is dropped

● Option 2: Decompose tcbinfo lock

– Connection groups (ConnP-L per Willman, et al)

– Less disruptive of current code
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TODO

● Identify key code paths that would benefit from 
increased parallelism

– IP forwarding path, netisr/loopback

● Develop new work management models to 
allow feedback from scheduler

– Is it cheaper to direct dispatch or are we 
overloading the current thread/CPU?

– Are there CPUs available to do additional work?

– How should the network stack tell the scheduler 
about data/connection affinity?


