
Experiments With Highly Parallel 
Network Stack Processing

Robert N. M. Watson

17 May 2007

FreeBSD Developer Summit
BSDCan 2007



17 May 2007 2

Introduction

● MPSAFE network stack in FreeBSD 5.3

– November 2004

● Network stack safe to execute concurrently

– Parallelism – many processors at a time

– Preemption – low latency context switching

– Direct dispatch – from interrupt thread context

● Opportunities are limited due to work model

– Threads represent potential parallelism

– So work must occur in multiple threads



17 May 2007 3

Socket to Interface Code Flow

kern_send()

sosend()
sbappend()

tcp_send()
tcp_output()

ip_output()

em_start() em_intr()

ether_input()ether_output()

ip_input()

tcp_reass()
tcp_input()

soreceive()
sbappend()

kern_recv()
System call
and socket

Link Layer

IP

TCP



17 May 2007 4

Transmit

netblast

em0 ithread

em_start()

send()
returns

em_intr()
preempts

sosend() udp_output()

ip_output()

em_clean_transmit_intr()

em_intr()
returns

send()



17 May 2007 5

Input Path Parallelism

● Does have native concurrency

– Work processed in ithread, optionally netisr, and 
user thread

● Cost of context switching measurable

– Default in 7.x is direct dispatch as frequently faster

● Ordered with respect to source

– Lack of parallelism for high bandwidth sources 



17 May 2007 6

Deferred netisr

netreceive

netisr

em0 ithread

recv() recv()
returns

em_intr()
preempts

netisr_dispatch() swi_net()

soreceive()

udp_input()netreceive
blocks

ether_input()

em_intr()
returns

ip_input()

idle

em_process_receive_interrupts()

sbappend()
sowakeup()

netreceive
wakes up



17 May 2007 7

Direct netisr

netreceive

em0 ithread

recv() recv()
returns

em_intr()
preempts

netisr_dispatch()

soreceive()

udp_input()

netreceive
blocks

ether_input()

ip_input()

idle

em_process_receive_interrupts()

sbappend()
sowakeup()

netreceive
wakes up

netisr



17 May 2007 8

netisr2

● Function of netisr after direct dispatch

– Encapsulation/decapsulation, loopback traffic

● Netisr2 re-implement netisr infrastructure

– Per-cpu kernel worker threads

– Maintain dispatch/queue distinction

● How to balance ordering and parallelism?

– For direct dispatch, source ordering

– For remote source input, per-protocol affinity lookup

– For locally source, affinity passed down stack



17 May 2007 9

TCP Input Parallelism

● Serious bottleneck for TCP input processing
● Two IP-layer locks per protocol

– Global pcbinfo lock protecting inpcb lists
● Insert, lookup, removal

– Per-inpcb lock protects per-connection state
● Global list manipulations involving connection
● Per-connection state

● Input path acquires and holds tcbinfo lock

– inpcb state may change requiring list changes



17 May 2007 10

Addressing Locking Granularity

● Big issue is tcbinfo lock

– Held over input paths that may reset connection

– In 7.x, no longer over common case output paths

● Option 1: True reference counting on inpcbs

– tcbinfo can be dropped and then safely re-acquired 
without race when inpcb lock is dropped

● Option 2: Decompose tcbinfo lock

– Connection groups (ConnP-L per Willman, et al)

– Less disruptive of current code



17 May 2007 11

TODO

● Identify key code paths that would benefit from 
increased parallelism

– IP forwarding path, netisr/loopback

● Develop new work management models to 
allow feedback from scheduler

– Is it cheaper to direct dispatch or are we 
overloading the current thread/CPU?

– Are there CPUs available to do additional work?

– How should the network stack tell the scheduler 
about data/connection affinity?


