
Exploiting Concurrency
Vulnerabilities in

System Call Wrappers

Robert N. M. Watson
Computer Laboratory

University of Cambridge
robert.watson@cl.cam.ac.uk

Abstract
System call interposition allows the kernel security model
to be extended. However, when combined with current
operating systems, it is open to concurrency vulnerabili-
ties leading to privilege escalation and audit bypass. We
discuss the theory and practice of system call wrapper
concurrency vulnerabilities, and demonstrate exploit tech-
niques against GSWTK, Systrace, and CerbNG.

1 Introduction
System call interposition is a kernel extension technique
used to augment operating system security policies with-
out modifying the underlying code. It is widely used in
research systems and commercial anti-virus software de-
spite research suggesting security and reliability problems.
Garfinkel [14], Ghormley [15], and the author [23] de-
scribe the potential for concurrency vulnerabilities in wrap-
per systems. However, these discussions are cursory – the
vulnerability of wrappers to concurrency attacks deserves
further exploration. We investigate vulnerabilities and ex-
ploit techniques for real-world systems, demonstrating that
inherent concurrency problems lead directly to exploitable
vulnerabilities. We conclude that addressing these sys-
temic vulnerabilities requires rethinking security exten-
sion architecture.

We first introduce concurrency in operating system
kernels and the system call wrapper technique. We then
discuss the structure of concurrency vulnerabilities, the
applicability of concurrency attacks to wrappers, and prac-
tical exploit techniques. We investigate privilege escala-
tion and audit bypass vulnerabilities in three system call
interposition systems, Generic Software Wrappers Toolkit
(GSWTK) [12], Systrace [20], and CerbNG [7]. Finally,
we explore deployed mitigation techniques and architec-
tural solutions to these vulnerabilities.

All experiments and measurements were performed
on a 3.2 GHz Intel Xeon.

2 Kernels and Concurrency
Operating system kernels are highly concurrent programs,
consuming concurrency services internally and offering
them to applications. Most desktop and server systems
support multiprocessing and threading, as do many em-
bedded systems, traditional bastions of minimalism.

In the operating system kernel, hardware sources of
concurrency are interrupts and multiprocessing. Kernels
provide internal threading facilities to kernel subsystems
(file systems, network stacks, etc) and expose concurrency
to applications via processes, threading, signals, and asyn-
chronous I/O. Application writers employ these to mask
I/O latency and exploit hardware parallelism. Concur-
rency is a fundamental operating system feature, and must
be considered carefully in any security services.

Resources

Reference Monitor

Consumer ...

A
cc

es
s 

R
eq

ue
st

s

Consumer

Kernel Services

System Call Wrapper

Process Process ...

S
ys

te
m

 C
al

ls
Figure 1: Misleading visual congruence of the reference
monitor and system call wrapper models.

3 Wrappers for Security
System call interposition imposes a reference monitor on
kernel services by intercepting system calls (Fig. 1). An-
derson [4] states that a reference monitor must be tam-
per proof, always invoked, and small enough to subject to
analysis and tests to assure correctness. System call wrap-
pers appear to meet these criteria: they run in the kernel’s
protection domain, are invoked in the system call path,
and avoid complex modifications to the kernel.

Further, wrappers see the UNIX API, allowing some
wrapper packages to be portable across multiple operat-
ing systems. System call wrappers are compiled into the
kernel or loaded as a module, hooking the system call trap
handler (Fig. 2). We adopt terminology from GSWTK:

• The precondition hook occurs prior to passing con-
trol to the kernel, allowing the wrapper to inspect or
substitute arguments before the kernel sees them.



System call
wrapper

postcondition
processing

System call
implementation

System call
wrapper

precondition
checks

Process

kernel

user

User process
invokes system call

Normal 
system 
call return 
to user 
space

Early wrapper-enforced system 
call return to user space

Figure 2: System call wrappers implement precondition
and postcondition processing around the system call.

• The postcondition hook occurs prior to returning
control to user space, allowing the wrapper to track
and log results, transform return values, etc.

Wrappers perform policy checks with system call num-
ber and arguments, and access to kernel data structures
such as process information. On access control failure,
they may abort the call, transform arguments, modify cre-
dentials, log events, or cause other side effects. By substi-
tuting argument and return values, system call wrappers
can change system object name spaces visible to appli-
cation; e.g,, a wrapper can redirect file open requests or
change the IP address bound by an application. Policy
sources include compiled policies (LOMAC [11]), policy
configuration languages (GSWTK, CerbNG), and even
message passing to user processes (Systrace).

4 Concurrency Vulnerabilities
Concurrency vulnerabilities are present wherever improper
software concurrency control can lead to a violation of se-
curity policy. They may originate from a failure to prop-
erly plan for concurrence, implementation errors in con-
currency control, or a mismatch between the expectations
of the implementer and run-time conditions.

Abbott et al describe a range of operating system vul-
nerability categories in the RISOS report [2], including
concurrency vulnerabilities resulting from asynchronous
validation and inadequate synchronization. Bisbey and
Hollingworth [5] identify the importance of consistency
over time for protection information, the challenges of
changes in object name binding over time, general serial-
ization errors, and interrupted atomic operations, in which
incorrect assumptions about the effects of concurrency on
operations lead to vulnerability. Fithen [10] lists possible
results of concurrency bugs:

• Deadlock: threads become permanently blocked.

• Loss of information: information is overwritten by
another thread.

• Loss of integrity information: information written
by multiple threads may be arbitrarily interlaced.

• Loss of liveness: unbalanced access to shared re-
sources leads to performance problems.

General concurrency bugs may lead to vulnerability
where they cause incorrect implementation of a desired
security property. Security-related outcomes range from
denial of service to violated access control properties, such
as corruption or leaking of sensitive data. Protection flaws
for data used in access control itself, such as credentials,
permissions, and security labels, will be of greatest value
to attackers. Fithen observes that most races are time-of-
check, time-of-use vulnerabilities. Several such attacks
are explored in past research, especially incorrect use of
race-prone file APIs in UNIX [6], and application signal
reentrance [25].

5 Concurrency Attacks on
Wrappers

As highly-concurrent software protecting critical data, op-
erating system kernels are fertile ground for the discovery
of concurrency vulnerabilities. In contrast to the assump-
tion of atomic system calls made in previous considera-
tions of race conditions [8], the key to our approach is
non-atomicity between the kernel and system call wrap-
pers. We have identified and successfully exploited three
forms of concurrency vulnerability in wrappers:

• Synchronization bugs in wrapper logic leading to
incorrect operation, e.g., improper locking of data.

• Lack of synchronization between the wrapper and
the kernel in copying system call arguments, such
that arguments processed by the wrapper and the
kernel differ. We describe these as syntactic race
conditions, as the attacker changes literal values.

• Lack of synchronization between the wrapper and
the kernel in interpreting system call arguments. We
describe these as semantic race conditions, as the
attacker manipulates the interpretation of values.

The latter two forms involve not a wrapper in isola-
tion, but rather its failure in composition with the service
it protects. We focus on syntactic race conditions which
do not depend on kernel and wrapper internals, and are
hence portable across wrapper frameworks and operating
systems. We found that the most frequently identifiable
and exploitable vulnerabilities fell into three categories:

• Time-of-check-to-time-of-use (TOCTTOU) vulner-
abilities, in which access control checks are non-
atomic with the operations they protect, allowing
an attacker to violate access control rules.



• Time-of-audit-to-time-of-use (TOATTOU) vulnera-
bilities, in which the trail diverges from actual ac-
cesses as a result of non-atomicity, violating accu-
racy requirements. This allows an attacker to mask
activity, avoiding IDS triggers.

• Time-of-replacement-to-time-of-use (TORTTOU)
vulnerabilities, unique to wrappers, in which attack-
ers modify system call arguments after a wrapper
has replaced them but before the kernel has accessed
them, violating the security policy.

We are not aware of prior research on the topic of
TOATTOU and TORTTOU vulnerabilities.

6 Exploit Techniques
Concurrency vulnerabilities exist where there is inade-
quate synchronization of a shared resource leading to vio-
lation of security policy. The first step in locating concur-
rency vulnerabilities is to identify resources relevant to ac-
cess control, audit, or other security functionality that are
accessed concurrently across a trust boundary. Relevant
resources include file system objects, shared memory, and
sockets, as well as indirectly accessed kernel objects, such
as nodes/inodes and kernel buffers. We will use process
memory holding system call arguments, which is accessed
by the user process, wrapper, and kernel. User memory
is accessed from the kernel with copying functions, e.g.
the BSD copyin() and copyout(), which validate ad-
dresses and page memory as needed.

Direct arguments are a passed as stack variables or
registers, and contain values such as process IDs and point-
ers; they are copied in by the system call trap handler.
Wrappers consume the same instance of these arguments
as the kernel, so are not subject to syntactic races.

Indirect arguments are referenced by pointers, often
passed as direct arguments, and copied on-demand by ker-
nel services: for example, file paths are copied and re-
solved by namei(). Indirect arguments are copied after
the precondition hook, so wrappers copy them indepen-
dently from the kernel, opening a race window between
the two copy operations. These races are limited to indi-
rect arguments, many of which are security-critical, such
as socket addresses, file paths, arguments to ioctl() and
sysctl(), group ID lists, resource limits, and I/O data.

6.1 Concurrency Approaches
Concurrent program execution on UNIX occurs via sig-
nals, asynchronous I/O, threads, and processes. Opera-
tions in a single process necessarily support shared mem-
ory; processes may shares memory using minherit(),

rfork(), and clone(), explicit shared memory and, de-
bugging interfaces. We share memory across processes
by inheritance, as other methods are not consistent across
systems. Prior work has considered races between user
processes, but we are interested in races between user
threads and the kernel itself. This requires the user thread
and kernel to run concurrently, which is possible through
interleaved scheduling or hardware parallelism.

6.2 Racing on Uniprocessor Systems
On uniprocessor (UP) systems, the attacker must cause
the kernel to yield to a user thread between execution of
the system call and wrapper preconditions and postcondi-
tions. Yielding may occur voluntarily (a thread requests
blocking I/O on a socket or disk) or involuntarily (a ker-
nel thread accesses memory resulting in a page fault from
disk). Both may be used to race with system call wrapper
preconditions and postconditions.

Page faults on indirect system call arguments are ef-
fective in opening up race windows. The resulting wait on
disk I/O provides a scheduling window of several million
instruction cycles, more than enough time for an attacking
thread to replace the contents of a memory page. On most
systems it is easy to arrange for user memory to be paged
to disk, either swap (if configured) or a memory mapped
file, by increasing memory pressure.

Initially, we believed that this technique was limited
to system calls with multiple indirect arguments, such as
rename(). We were able to successfully exploit this case
by paging the rename() target path to disk, allowing the
source path to be replaced between check and use. On re-
flection, we realized that copy operations themselves are
non-atomic, sleeping part-way through if user data spans
multiple pages, allowing even system calls with a single
argument to be attacked. This works well as the last byte
of many indirect arguments is not essential: strings are
nul-terminated and many data structures contain padding.
Page faults may also be used to attack postconditions, sub-
ject to the limitation that it is possible to force a page fault
on each page only once during most system calls.

Voluntary thread sleeps also prove useful: during a
TCP connect(), the calling thread will wait in kernel
for a TCP ACK to confirm the connection, allowing a user
thread to execute after the arguments have been copied in
by the kernel to attack on postcondition auditing.

6.3 Racing on Multiprocessor Systems
We consider any system with parallelism to be multipro-
cessor (MP), including SMT and multicore systems. UP
systems are vulnerable to races, but require manipulating
kernel scheduling via limited yield opportunities. On MP



systems, races between user and kernel threads can be ex-
ploited without relying on kernel sleeping, as user threads
may run simultaneously other CPUs. Inter-CPU races are
narrower, as they occur at memory speed (10K-100K cy-
cles) rather than disk or network speed (>1M cycles).

We use two approaches to identify timing for argu-
ment replacement. In the case of argument copies without
replacement, a binary search for the Time Stamp Counter
(TSC) length of the race window can be performed by in-
specting the results of the system call being raced with.
In the case of argument copies with replacement by the
wrapper, it is possible to simply spin watching for the re-
placement, then modify the argument.

We found that race window length varied based across
wrapper systems. Races on arguments in GSWTK, which
runs only in kernel, were often between 5K and 15K cy-
cles. Systrace passes control to a user process, which
performs optional copies in and out of the target process,
opening race windows of over 100K. The order of magni-
tude difference in race window size did not, however, lead
to measurable differences in attack cost: we had a 100%
success rate in exploiting races across packages.

7 Exercising Real Vulnerabilities

7.1 Generic Software Wrappers Toolkit
GSWTK is a kernel access control system that allows task-
specific system call wrappers to inspect and modify argu-
ments and return values. Wrappers are written using a
C language extension with integrated SQL database sup-
port. GSWTK is available as a third party package on
the Solaris, FreeBSD, BSD/OS, and Linux platforms; we
employed GSWTK 1.6.3 on FreeBSD 4.11. A variety of
wrappers are available, from access control policies to in-
trusion detection systems.

We were able to successfully substitute values used in
both precondition access control and postcondition audit-
ing and intrusion detection on UP with paging (Fig. 3),
and on MP systems from a second processor. After ex-
perimentally validating the approach on a subset of wrap-
pers, we inspected the remaining wrappers shipped with
GSWTK. Of 23 wrappers available for UNIX or all plat-
forms, 16 had one ore more vulnerabilities (Table 1). Also
of interest is Ko’s work on sequence-based intrusion de-
tection [18], as it illustrates the potential impact of TOAT-
TOU vulnerabilities. Investigation revealed vulnerabili-
ties in several intrusion detection wrappers.

7.2 Systrace
Systrace is an access control system that allows user pro-
cesses to control target processes by inspecting and mod-
ifying system call arguments and return values. Systrace

GSWTK
postcondition

rename()
system call

/home/ko/Inbox

/home/ko/Sent

/home/ko/.forward

Process 1

Process 2

kernel

user

user

Shared 
Memory

Target
Path

Source 
Path

Kernel sleeps 
while paging 
target path back 
into memory

Attacker replaces 
source path in memory 
while kernel is paging

Attacker 
forces 
target path 
into swap

idwrapper 
copies replaced 
source path for 
use with IDS

Kernel 
copies 
unmodified 
source path

Exploitable race
window as

memory is paged

Attacker 
copies 
initial 
paths

Figure 3: Processes employ paging to force copyin() in
rename() to sleep so that the process can use a TOAT-
TOU attack on an intrusion detection wrapper.

ships in the OpenBSD and NetBSD operating systems,
with ports to Mac OS X, FreeBSD, and Linux. For this
work, we used Systrace on NetBSD 3.1, 4.0 (Jan. 2007),
and OpenBSD 4.0. As Systrace is a programmable policy
system, we used two policies: Sudo monitor mode [19]
and Sysjail [16]. We bypassed protections in both, violat-
ing access control policy and audit trail integrity.

7.2.1 Sudo

Sudo [19] is a widely used privilege management tool al-
lowing users to run authorized commands with the rights
of another user. The prerelease version of Sudo includes
a monitor mode based on Systrace that audits commands
executed by Sudo-derived processes. Sudo intercepts
execve(), which accepts a program path, command line
arguments, and environmental variables as indirect argu-
ments, and thus vulnerable to attack. Due to a user space
policy source, Systrace requires additional context switches
to make access control decisions, leading to larger race
windows. With Sudo on MP systems, the window for
execve() arguments was over 430K cycles. We were
able to successfully exploit this vulnerability, replacing
command lines so that they were incorrectly logged, mask-
ing all further attacker activity in the audit trail.

7.2.2 Sysjail

Sysjail [16] is port of the FreeBSD jail containment fa-
cility [17] using the Systrace framework for NetBSD and
OpenBSD. Sysjail attaches to all processes in the jail, val-
idating and in some cases rewriting system call arguments
to maintain confinement. Sysjail is of particular interest as
it is intended to contain processes running with root priv-
ilege, increasing exposure in the event of vulnerability.



Wrapper Description Vulnerabilities
callcount Count system calls None: relies on the system call number.
conwatch Track IP connections by processes. Postcondition TOATTOU race on connect() and

bind() allows masking address/port used.
dbfencrypt Encrypt files with ’$’ in their names;

prevent rename so that encryption
policy on a file cannot be changed.

Postcondition TOCTTOU race allows incorrect name
in policy check; precondition TORTTOU races on I/O
write unencrypted data and bypass rename checks.

dbexec Authorize execution of programs
based on a pathname database.

Precondition TOCTTOU race allows bypass by substi-
tuting the name during the wrapper check.

dbsynthetic Synthetic file system sandbox sub-
stituting pathnames from a database.

Precondition TORTTOU race bypasses path replace-
ment; postcondition TORTTOU race leaks true paths

life Prints the process life cycle. Precondition TOATTOU race replaces exec() paths.
noadmin Deny all privileged operations. None: relies on the kernel’s process credential.
aks.wr Audit file operations Pre/postcondition TOATTOU races avoid audit.
seq-kernel.wr Sequence-based intrusion detection None: relies on the system call number.
imapd.wr Detect anomalous access by imapd. Postcondition TOATTOU path races prevent alerts.

Table 1: Selection of concurrency vulnerabilities in GSWTK and ID Wrappers

192.168.100.10.0.0.0

bind() system callSystrace

Process 1

Process 2

kernel

user

user

P1 sets 
original 
address

Sysjail copies 
in and checks 
original IP 
address

P2 replaces address in 
shared memory from 
second processor

bind() system call 
copies in replaced 
address for use in 
operation

Exploitable race
window between
two copyin() calls

Shared 
Memory

Figure 4: Race to bypass protections from a second pro-
cessor by replacing the IP address between check and use.

Sysjail handles several indirect arguments, including
IP addresses passed to bind(). It enforces two constraints:
the address must be configured for the jail or it must be
INADDR ANY, in which case it will be replaced with the
jail’s address. By racing with the Sysjail, we are able to
replace the IP accepted by Sysjail with another IP address,
bypassing network confinement (Fig. 4).

7.3 CerbNG
CerbNG is a third-party security framework for FreeBSD
4.8 similar to GSWTK. It allows rule-based control of sys-
tem calls, checking and modifying arguments and return
values, changing process properties, and logging
events. We successfully exploited TOATTOU and TOCT-
TOU races in rules shipped with the system, replacing

command lines in log-exec.cb, which audits execve(),
generating incorrect audit trails. It employs several virtual
memory defenses discussed in Section 8.1.

8 Preventing Wrapper Races?
System call wrapper races can lead to partial or complete
bypass of access control and audit. To address this, con-
currency must be properly managed. We consider pro-
posed solutions in three areas: those that retain the wrap-
per architecture but modify wrapper systems to mitigate
attacks, those that retain the wrapper architecture but mod-
ify to the OS kernel, and those that entirely abandon the
wrapper approach in extending kernel security.

8.1 Mitigation Techniques
Lee Badger has suggested a weak consistency approach:
detect and mitigate exploitative changes in kernel state via
a postcondition, taking remedial action if a violation has
occurred. We believe that this approach faces challenges
from the complex side effects of some system calls (e.g.,
connect() and unlink()); detecting inconsistency faces
the same atomicity issues as other postconditions.

Dawidek has experimented with marking memory
pages holding system call arguments read-only during sys-
tem calls. If implemented properly, this prevents argu-
ment races, but violates concurrent programming assump-
tions. Legitimate multithreaded processes may store con-
currently accessed data in the same memory page as argu-
ments, and will suffer ill effects such as unexpected faults.

VM protection is non-trivial as all mappings of a phys-
ical page must be protected. One interesting case involves



memory-mapped files: systems with unified VM/buffer
caches must prevent writes via I/O system calls, not just
mapped memory. Protecting pages is also insufficient:
the address space must be protected to prevent the un-
mapping of protected pages and remapping with writable
ones. We found several vulnerabilities in CerbNG’s VM
protections, including incorrect write protection of pages,
and race windows while copying arguments.

Provos provides similar facilities in Systrace, copying
indirect arguments into the “stack gap”, a reserved area of
process memory, allowing wrappers to substitute indirect
arguments of greater size than the original argument. He
has also suggested that this may be used to resist shared
memory attacks as the stack gap area is unique to each
process. This protection is not effective with threads, as
threads share a single address space. Experimentation on
OpenBSD indicates that the stack gap mapping can be re-
placed with shared memory accessible to other processes
even in the non-threaded case. This approach causes ad-
ditional data copies for any protected arguments.

Ghormley addresses argument races in the SLIC inter-
position framework via in-kernel buffers that extend the
user address space. Each thread caches regions of the
address space copied by the extension or kernel; future
accesses will be from the cache, preventing further mod-
ification by user threads. This approach requires replac-
ing the kernel copy routines so that the kernel, not just
wrappers, use the cache. As cache buffers are not forced
to page size, the false sharing effects of page protections
are avoided; however, this approach imposes a significant
performance penalty, as all indirect arguments must be
copied and cached in kernel memory.

VM and caching schemes make processing indirect ar-
guments that are read and written in a single system call
(such as POSIX asynchronous I/O) more tricky. None of
the systems with protections were able to handle this case
correctly, although this had limited impact as none of the
sample policies controlled affected system calls.

These mitigation techniques suffer serious correctness
and performance problems. VM and caching protect only
against syntactic vulnerability, as they prevent the attacker
from replacing arguments and do not synchronize with
kernel services. Fundamentally, system call wrappers are
not architecturally well-placed to synchronize with the ker-
nel, as this conflicts with clean separation from the kernel.

8.2 Message Passing Systems
In order to maintain the system call interposition model
without resorting to mitigation techniques, kernel opera-
tion must be changed. One possibility is to move to a
message-passing model, in which system call arguments
are bundled and delivered to the kernel at once rather than
being copied on-demand. This approach would not elim-

inate semantic race conditions, but would eliminate syn-
tactic race conditions by allowing wrappers to inspect the
same argument values as the kernel. The disadvantage
to this model is that it requires the complete layout of
arguments to be available to the trap handler; currently,
this knowledge is distributed across many layers of the
kernel. Garfinkel’s Ostia [13] and Seaborn’s Plash [21]
both implement message-passing approaches in which ac-
cess to the file system name space must occur “by proxy”
via a monitor process, avoiding argument and name space
copying races, but allowing further accesses occur directly
using a passed file descriptor. VM mitigation schemes
may be gradually extended to approximate the message
passing paradigm, although provide less clean implemen-
tations than systems designed with message passing in
mind, such as Mach [3].

8.3 Integrating Security and Concurrency
A more flexible, if more complex approach, is to eliminate
race conditions between security extensions and the ker-
nel by integrating security checks with the kernel itself.
Invocations of security extensions occur throughout the
kernel, atomically with respect to use of the object they
control. For example, access control checks on a process
operation would be performed while holding locks on the
process to prevent changes in associated context.

As system call interposition was developed to avoid
OS modification, this may seem contradictory; however,
the move to open source systems and the adoption of secu-
rity extensions has driven the creation of security frame-
works by vendors. The approach has been adopted by
FLASK in SELinux, SEBSD, and SEDarwin [22], the
TrustedBSD MAC Framework in FreeBSD and Mac OS
X [23], kauth in NetBSD and Mac OS X [1, 9], and
Linux Security Modules [24]. The degree of integration
varies across systems: at one extreme, the TrustedBSD
MAC Framework asserts object locks at each entry from
the kernel, allowing policies to rely on kernel locks to pro-
tect associated access control checks. At the other, the
kauth framework allows upcalls to a user process, which
precludes holding some locks over checks.

Integrated kernel security frameworks do not elimi-
nate the problem of concurrency vulnerabilities entirely
but they do provide tools to avoid race conditions innate
to the system call interposition approach.

9 Conclusion
In this paper, we have explored concurrency vulnerabil-
ities in system call interposition security extensions, ar-
guing that correctness with respect to concurrency is not
only important in preventing inconvenient deadlocks, but



also critical to access control and audit. We have demon-
strated that several wrapper systems suffer from common
classes of concurrency vulnerability allowing privilege es-
calation and bypass of intrusion detection. These vulner-
abilities derive from the fundamental architectural sepa-
ration of the wrapper and native kernel synchronization
strategies – the same structural separation that leads to a
deceptively appealing similarity to an idealized reference
monitor. We have also demonstrated that many deployed
mitigation solutions suffer from vulnerabilities, as well as
semantic or performance degradation, and that architec-
tural solutions require much tighter integration of security
with the kernel.

References
[1] Kernel Authorization. Technical Note

TN2127, Apple Computer, Inc., 2007. http:
//developer.apple.com/technotes/
tn2005/tn2127.html.

[2] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L.
Konigsford, S. Tokubo, and D. A. Webb. Security
Analysis and Enhancements of Computer Operating
Systems. Technical Report NBSIR 76-1041, Na-
tional Bureau of Standards, April 1976.

[3] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Teva-
nian, and M. Young. Mach: A New Kernel Founda-
tion for UNIX Development. Technical report, Au-
gust 1986.

[4] James P. Anderson. Computer Security Technol-
ogy Planning Study. Technical report, Electronic
Systems Division, Air Force Systems Command,
Hanscom Field, Bedford, MA 01730, October 1972.

[5] Richard Bisbey and Dennis Hollingworth. Pro-
tection Analysis: Final Report. Technical Report
ISI/SR-78-13, Information Sciences Institute, Uni-
versity of Southern California, May 1978.

[6] Matt Bishop and Michael Dilger. Checking for race
conditions in file accesses. Computing Systems,
9(2):131–152, Spring 1996.

[7] Pawel Jakub Dawidek and Slawomir Zak. CerbNG:
system firewall mechanism, 2007. http://
cerber.sourceforge.net/.

[8] Drew Dean and Alan J. Hu. Fixing Races for Fun
and Profit: How to use access(2). In Proc. 13th
USENIX Security Symposium, August 2004.

[9] Elad Efrat. kauth: kernel authorization frame-
work. In NetBSD Kernel Developer’s Manual.

January 2007. http://www.netbsd.org/
∼elad/recent/man/kauth.9.html.

[10] William L. Fithen. Follow the Rules Regarding
Concurrency Management. BuildSecurityIn, Oc-
tober 2005. https://buildsecurityin.
us-cert.gov/daisy/bsi/articles/
knowledge/guidelines/332.html.

[11] Timothy Fraser. LOMAC: Low Water-Mark In-
tegrity Protection for COTS Environments. In Proc.
2000 IEEE Symposium on Security and Privacy,
2000.

[12] Timothy Fraser, Lee Badger, and Mark Feldman.
Hardening COTS Software with Generic Software
Wrappers. In Proc. 1999 IEEE Symposium on Secu-
rity and Privacy, May 1999.

[13] T. Garfinkel, B. Pfa, and M. Rosenblum. Ostia: A
delegating architecture for secure system call inter-
position. In Proc. Internet Society 2003, 2003.

[14] Tal Garfinkel. Traps and Pitfalls: Practical Prob-
lems in in System Call Interposition Based Security
Tools. In Proc. Network and Distributed Systems Se-
curity Symposium, February 2003.

[15] Douglas P. Ghormley, David Patrou, Steven H. Ro-
drigues, and Thomas E. Anderson. SLIC: An Exten-
sibility System for Commodity Operating Systems.
In Proc. USENIX Annual Technical Conference (NO
98), June 1998.

[16] Kristaps Johnson and Maikls Deksters. sysjail:
systrace userland virtualization, 2007. http://
sysjail.bsd.lv/.

[17] Poul-Henning Kamp and Robert N. M. Watson.
Jails: Confining the omnipotent root. In Proc. 2nd
International SANE Conference, 2000.

[18] Calvin Ko, Timothy Fraser, Lee Badger, and Dou-
glas Kilpatrick. Detecting and Countering System
Intrusions Using Software Wrappers. In Proc. 9th
Usenix Security Symposium, August 2000.

[19] Todd C. Miller. Sudo, 2007. http://www.
gratisoft.us/sudo/.

[20] Niels Provos. Improving Host Security with System
Call Policies. In Proc. 12th USENIX Security Sym-
posium, Washington, DC, August 2003.

[21] Mark Seaborn. Plash: tools for practical least privi-
lege, 2007. http://plash.beasts.org/.



[22] Ray Spencer, Stephen Smalley, Peter Loscocco,
Mike Hibler, David Anderson, and Jay Lepreau. The
Flask Security Architecture: System Support for Di-
verse Security Policies. In Proc. 8th USENIX Secu-
rity Symposium, August 1999.

[23] Robert Watson, Brian Feldman, Adam Migus, and
Chris Vance. Design and Implementation of the
TrustedBSD MAC Framework. In Proc. Third
DARPA Information Survivability Conference and
Exhibition (DISCEX), IEEE, April 2003.

[24] Chris Wright, Crispan Cowan, James Morris,
Stephen Smalley, and Greg Kroah-Hartman. Linux
Security Modules: General Security Support for the
Linux Kernel. In Proc. 11th USENIX Security Sym-
posium, August 2002.

[25] Michal Zalewski. Delivering Signals for Fun and
Profit: Understanding, exploiting and preventing
signal-handling related vulnerabilities. 2001.
http://www.bindview.com/Services/
Razor/Papers/2001/signals.cfm.


